3.5.64 \(\int \frac {\sqrt {\sec (c+d x)} (A+B \sec (c+d x))}{(a+b \sec (c+d x))^{3/2}} \, dx\) [464]

Optimal. Leaf size=215 \[ \frac {2 A \sqrt {\frac {b+a \cos (c+d x)}{a+b}} F\left (\frac {1}{2} (c+d x)|\frac {2 a}{a+b}\right ) \sqrt {\sec (c+d x)}}{a d \sqrt {a+b \sec (c+d x)}}+\frac {2 (A b-a B) E\left (\frac {1}{2} (c+d x)|\frac {2 a}{a+b}\right ) \sqrt {a+b \sec (c+d x)}}{a \left (a^2-b^2\right ) d \sqrt {\frac {b+a \cos (c+d x)}{a+b}} \sqrt {\sec (c+d x)}}-\frac {2 (A b-a B) \sqrt {\sec (c+d x)} \sin (c+d x)}{\left (a^2-b^2\right ) d \sqrt {a+b \sec (c+d x)}} \]

[Out]

-2*(A*b-B*a)*sin(d*x+c)*sec(d*x+c)^(1/2)/(a^2-b^2)/d/(a+b*sec(d*x+c))^(1/2)+2*A*(cos(1/2*d*x+1/2*c)^2)^(1/2)/c
os(1/2*d*x+1/2*c)*EllipticF(sin(1/2*d*x+1/2*c),2^(1/2)*(a/(a+b))^(1/2))*((b+a*cos(d*x+c))/(a+b))^(1/2)*sec(d*x
+c)^(1/2)/a/d/(a+b*sec(d*x+c))^(1/2)+2*(A*b-B*a)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticE(sin
(1/2*d*x+1/2*c),2^(1/2)*(a/(a+b))^(1/2))*(a+b*sec(d*x+c))^(1/2)/a/(a^2-b^2)/d/((b+a*cos(d*x+c))/(a+b))^(1/2)/s
ec(d*x+c)^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.32, antiderivative size = 215, normalized size of antiderivative = 1.00, number of steps used = 8, number of rules used = 8, integrand size = 35, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.229, Rules used = {4112, 4120, 3941, 2734, 2732, 3943, 2742, 2740} \begin {gather*} -\frac {2 (A b-a B) \sin (c+d x) \sqrt {\sec (c+d x)}}{d \left (a^2-b^2\right ) \sqrt {a+b \sec (c+d x)}}+\frac {2 (A b-a B) \sqrt {a+b \sec (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 a}{a+b}\right )}{a d \left (a^2-b^2\right ) \sqrt {\sec (c+d x)} \sqrt {\frac {a \cos (c+d x)+b}{a+b}}}+\frac {2 A \sqrt {\sec (c+d x)} \sqrt {\frac {a \cos (c+d x)+b}{a+b}} F\left (\frac {1}{2} (c+d x)|\frac {2 a}{a+b}\right )}{a d \sqrt {a+b \sec (c+d x)}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(Sqrt[Sec[c + d*x]]*(A + B*Sec[c + d*x]))/(a + b*Sec[c + d*x])^(3/2),x]

[Out]

(2*A*Sqrt[(b + a*Cos[c + d*x])/(a + b)]*EllipticF[(c + d*x)/2, (2*a)/(a + b)]*Sqrt[Sec[c + d*x]])/(a*d*Sqrt[a
+ b*Sec[c + d*x]]) + (2*(A*b - a*B)*EllipticE[(c + d*x)/2, (2*a)/(a + b)]*Sqrt[a + b*Sec[c + d*x]])/(a*(a^2 -
b^2)*d*Sqrt[(b + a*Cos[c + d*x])/(a + b)]*Sqrt[Sec[c + d*x]]) - (2*(A*b - a*B)*Sqrt[Sec[c + d*x]]*Sin[c + d*x]
)/((a^2 - b^2)*d*Sqrt[a + b*Sec[c + d*x]])

Rule 2732

Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[2*(Sqrt[a + b]/d)*EllipticE[(1/2)*(c - Pi/2
+ d*x), 2*(b/(a + b))], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]

Rule 2734

Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[Sqrt[a + b*Sin[c + d*x]]/Sqrt[(a + b*Sin[c +
 d*x])/(a + b)], Int[Sqrt[a/(a + b) + (b/(a + b))*Sin[c + d*x]], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 -
 b^2, 0] &&  !GtQ[a + b, 0]

Rule 2740

Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/(d*Sqrt[a + b]))*EllipticF[(1/2)*(c - P
i/2 + d*x), 2*(b/(a + b))], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]

Rule 2742

Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[Sqrt[(a + b*Sin[c + d*x])/(a + b)]/Sqrt[a
+ b*Sin[c + d*x]], Int[1/Sqrt[a/(a + b) + (b/(a + b))*Sin[c + d*x]], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a
^2 - b^2, 0] &&  !GtQ[a + b, 0]

Rule 3941

Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)], x_Symbol] :> Dist[Sqrt[a +
 b*Csc[e + f*x]]/(Sqrt[d*Csc[e + f*x]]*Sqrt[b + a*Sin[e + f*x]]), Int[Sqrt[b + a*Sin[e + f*x]], x], x] /; Free
Q[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0]

Rule 3943

Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Dist[Sqrt[d*C
sc[e + f*x]]*(Sqrt[b + a*Sin[e + f*x]]/Sqrt[a + b*Csc[e + f*x]]), Int[1/Sqrt[b + a*Sin[e + f*x]], x], x] /; Fr
eeQ[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0]

Rule 4112

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*
(B_.) + (A_)), x_Symbol] :> Simp[(-d)*(A*b - a*B)*Cot[e + f*x]*(a + b*Csc[e + f*x])^(m + 1)*((d*Csc[e + f*x])^
(n - 1)/(f*(m + 1)*(a^2 - b^2))), x] + Dist[1/((m + 1)*(a^2 - b^2)), Int[(a + b*Csc[e + f*x])^(m + 1)*(d*Csc[e
 + f*x])^(n - 1)*Simp[d*(n - 1)*(A*b - a*B) + d*(a*A - b*B)*(m + 1)*Csc[e + f*x] - d*(A*b - a*B)*(m + n + 1)*C
sc[e + f*x]^2, x], x], x] /; FreeQ[{a, b, d, e, f, A, B}, x] && NeQ[A*b - a*B, 0] && NeQ[a^2 - b^2, 0] && LtQ[
m, -1] && LtQ[0, n, 1]

Rule 4120

Int[(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_))/(Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)]*Sqrt[csc[(e_.) + (f_.)*(x_)]*(
b_.) + (a_)]), x_Symbol] :> Dist[A/a, Int[Sqrt[a + b*Csc[e + f*x]]/Sqrt[d*Csc[e + f*x]], x], x] - Dist[(A*b -
a*B)/(a*d), Int[Sqrt[d*Csc[e + f*x]]/Sqrt[a + b*Csc[e + f*x]], x], x] /; FreeQ[{a, b, d, e, f, A, B}, x] && Ne
Q[A*b - a*B, 0] && NeQ[a^2 - b^2, 0]

Rubi steps

\begin {align*} \int \frac {\sqrt {\sec (c+d x)} (A+B \sec (c+d x))}{(a+b \sec (c+d x))^{3/2}} \, dx &=-\frac {2 (A b-a B) \sqrt {\sec (c+d x)} \sin (c+d x)}{\left (a^2-b^2\right ) d \sqrt {a+b \sec (c+d x)}}-\frac {2 \int \frac {\frac {1}{2} (-A b+a B)-\frac {1}{2} (a A-b B) \sec (c+d x)}{\sqrt {\sec (c+d x)} \sqrt {a+b \sec (c+d x)}} \, dx}{a^2-b^2}\\ &=-\frac {2 (A b-a B) \sqrt {\sec (c+d x)} \sin (c+d x)}{\left (a^2-b^2\right ) d \sqrt {a+b \sec (c+d x)}}+\frac {A \int \frac {\sqrt {\sec (c+d x)}}{\sqrt {a+b \sec (c+d x)}} \, dx}{a}+\frac {(A b-a B) \int \frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {\sec (c+d x)}} \, dx}{a \left (a^2-b^2\right )}\\ &=-\frac {2 (A b-a B) \sqrt {\sec (c+d x)} \sin (c+d x)}{\left (a^2-b^2\right ) d \sqrt {a+b \sec (c+d x)}}+\frac {\left (A \sqrt {b+a \cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {1}{\sqrt {b+a \cos (c+d x)}} \, dx}{a \sqrt {a+b \sec (c+d x)}}+\frac {\left ((A b-a B) \sqrt {a+b \sec (c+d x)}\right ) \int \sqrt {b+a \cos (c+d x)} \, dx}{a \left (a^2-b^2\right ) \sqrt {b+a \cos (c+d x)} \sqrt {\sec (c+d x)}}\\ &=-\frac {2 (A b-a B) \sqrt {\sec (c+d x)} \sin (c+d x)}{\left (a^2-b^2\right ) d \sqrt {a+b \sec (c+d x)}}+\frac {\left (A \sqrt {\frac {b+a \cos (c+d x)}{a+b}} \sqrt {\sec (c+d x)}\right ) \int \frac {1}{\sqrt {\frac {b}{a+b}+\frac {a \cos (c+d x)}{a+b}}} \, dx}{a \sqrt {a+b \sec (c+d x)}}+\frac {\left ((A b-a B) \sqrt {a+b \sec (c+d x)}\right ) \int \sqrt {\frac {b}{a+b}+\frac {a \cos (c+d x)}{a+b}} \, dx}{a \left (a^2-b^2\right ) \sqrt {\frac {b+a \cos (c+d x)}{a+b}} \sqrt {\sec (c+d x)}}\\ &=\frac {2 A \sqrt {\frac {b+a \cos (c+d x)}{a+b}} F\left (\frac {1}{2} (c+d x)|\frac {2 a}{a+b}\right ) \sqrt {\sec (c+d x)}}{a d \sqrt {a+b \sec (c+d x)}}+\frac {2 (A b-a B) E\left (\frac {1}{2} (c+d x)|\frac {2 a}{a+b}\right ) \sqrt {a+b \sec (c+d x)}}{a \left (a^2-b^2\right ) d \sqrt {\frac {b+a \cos (c+d x)}{a+b}} \sqrt {\sec (c+d x)}}-\frac {2 (A b-a B) \sqrt {\sec (c+d x)} \sin (c+d x)}{\left (a^2-b^2\right ) d \sqrt {a+b \sec (c+d x)}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.74, size = 161, normalized size = 0.75 \begin {gather*} \frac {2 \sqrt {\sec (c+d x)} \left (-\left ((a+b) (-A b+a B) \sqrt {\frac {b+a \cos (c+d x)}{a+b}} E\left (\frac {1}{2} (c+d x)|\frac {2 a}{a+b}\right )\right )+A \left (a^2-b^2\right ) \sqrt {\frac {b+a \cos (c+d x)}{a+b}} F\left (\frac {1}{2} (c+d x)|\frac {2 a}{a+b}\right )+a (-A b+a B) \sin (c+d x)\right )}{a (a-b) (a+b) d \sqrt {a+b \sec (c+d x)}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(Sqrt[Sec[c + d*x]]*(A + B*Sec[c + d*x]))/(a + b*Sec[c + d*x])^(3/2),x]

[Out]

(2*Sqrt[Sec[c + d*x]]*(-((a + b)*(-(A*b) + a*B)*Sqrt[(b + a*Cos[c + d*x])/(a + b)]*EllipticE[(c + d*x)/2, (2*a
)/(a + b)]) + A*(a^2 - b^2)*Sqrt[(b + a*Cos[c + d*x])/(a + b)]*EllipticF[(c + d*x)/2, (2*a)/(a + b)] + a*(-(A*
b) + a*B)*Sin[c + d*x]))/(a*(a - b)*(a + b)*d*Sqrt[a + b*Sec[c + d*x]])

________________________________________________________________________________________

Maple [B] Leaf count of result is larger than twice the leaf count of optimal. \(944\) vs. \(2(257)=514\).
time = 20.41, size = 945, normalized size = 4.40

method result size
default \(\frac {2 \left (-A \cos \left (d x +c \right ) \sin \left (d x +c \right ) \sqrt {\frac {b +a \cos \left (d x +c \right )}{\left (1+\cos \left (d x +c \right )\right ) \left (a +b \right )}}\, \sqrt {\frac {1}{1+\cos \left (d x +c \right )}}\, \EllipticF \left (\frac {\left (-1+\cos \left (d x +c \right )\right ) \sqrt {\frac {a -b}{a +b}}}{\sin \left (d x +c \right )}, \sqrt {-\frac {a +b}{a -b}}\right ) a -A \sin \left (d x +c \right ) \cos \left (d x +c \right ) \EllipticE \left (\frac {\left (-1+\cos \left (d x +c \right )\right ) \sqrt {\frac {a -b}{a +b}}}{\sin \left (d x +c \right )}, \sqrt {-\frac {a +b}{a -b}}\right ) \sqrt {\frac {b +a \cos \left (d x +c \right )}{\left (1+\cos \left (d x +c \right )\right ) \left (a +b \right )}}\, \sqrt {\frac {1}{1+\cos \left (d x +c \right )}}\, b -B \sin \left (d x +c \right ) \cos \left (d x +c \right ) \EllipticF \left (\frac {\left (-1+\cos \left (d x +c \right )\right ) \sqrt {\frac {a -b}{a +b}}}{\sin \left (d x +c \right )}, \sqrt {-\frac {a +b}{a -b}}\right ) \sqrt {\frac {b +a \cos \left (d x +c \right )}{\left (1+\cos \left (d x +c \right )\right ) \left (a +b \right )}}\, \sqrt {\frac {1}{1+\cos \left (d x +c \right )}}\, a +B \sin \left (d x +c \right ) \cos \left (d x +c \right ) \sqrt {\frac {b +a \cos \left (d x +c \right )}{\left (1+\cos \left (d x +c \right )\right ) \left (a +b \right )}}\, \sqrt {\frac {1}{1+\cos \left (d x +c \right )}}\, \EllipticE \left (\frac {\left (-1+\cos \left (d x +c \right )\right ) \sqrt {\frac {a -b}{a +b}}}{\sin \left (d x +c \right )}, \sqrt {-\frac {a +b}{a -b}}\right ) a -A \sqrt {\frac {b +a \cos \left (d x +c \right )}{\left (1+\cos \left (d x +c \right )\right ) \left (a +b \right )}}\, \sqrt {\frac {1}{1+\cos \left (d x +c \right )}}\, \EllipticF \left (\frac {\left (-1+\cos \left (d x +c \right )\right ) \sqrt {\frac {a -b}{a +b}}}{\sin \left (d x +c \right )}, \sqrt {-\frac {a +b}{a -b}}\right ) a \sin \left (d x +c \right )-A \sqrt {\frac {b +a \cos \left (d x +c \right )}{\left (1+\cos \left (d x +c \right )\right ) \left (a +b \right )}}\, \sqrt {\frac {1}{1+\cos \left (d x +c \right )}}\, \EllipticE \left (\frac {\left (-1+\cos \left (d x +c \right )\right ) \sqrt {\frac {a -b}{a +b}}}{\sin \left (d x +c \right )}, \sqrt {-\frac {a +b}{a -b}}\right ) b \sin \left (d x +c \right )-B \sqrt {\frac {b +a \cos \left (d x +c \right )}{\left (1+\cos \left (d x +c \right )\right ) \left (a +b \right )}}\, \sqrt {\frac {1}{1+\cos \left (d x +c \right )}}\, \EllipticF \left (\frac {\left (-1+\cos \left (d x +c \right )\right ) \sqrt {\frac {a -b}{a +b}}}{\sin \left (d x +c \right )}, \sqrt {-\frac {a +b}{a -b}}\right ) a \sin \left (d x +c \right )+B \sqrt {\frac {b +a \cos \left (d x +c \right )}{\left (1+\cos \left (d x +c \right )\right ) \left (a +b \right )}}\, \sqrt {\frac {1}{1+\cos \left (d x +c \right )}}\, \EllipticE \left (\frac {\left (-1+\cos \left (d x +c \right )\right ) \sqrt {\frac {a -b}{a +b}}}{\sin \left (d x +c \right )}, \sqrt {-\frac {a +b}{a -b}}\right ) a \sin \left (d x +c \right )+A \cos \left (d x +c \right ) \sqrt {\frac {a -b}{a +b}}\, b -B \cos \left (d x +c \right ) \sqrt {\frac {a -b}{a +b}}\, a -A \sqrt {\frac {a -b}{a +b}}\, b +B \sqrt {\frac {a -b}{a +b}}\, a \right ) \cos \left (d x +c \right ) \sqrt {\frac {1}{\cos \left (d x +c \right )}}\, \sqrt {\frac {b +a \cos \left (d x +c \right )}{\cos \left (d x +c \right )}}}{d \sin \left (d x +c \right ) \left (b +a \cos \left (d x +c \right )\right ) \left (a +b \right ) \sqrt {\frac {a -b}{a +b}}\, a}\) \(945\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((A+B*sec(d*x+c))*sec(d*x+c)^(1/2)/(a+b*sec(d*x+c))^(3/2),x,method=_RETURNVERBOSE)

[Out]

2/d*(-A*cos(d*x+c)*sin(d*x+c)*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*(1/(1+cos(d*x+c)))^(1/2)*EllipticF
((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(-(a+b)/(a-b))^(1/2))*a-A*sin(d*x+c)*cos(d*x+c)*EllipticE((-1+
cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(-(a+b)/(a-b))^(1/2))*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)
*(1/(1+cos(d*x+c)))^(1/2)*b-B*sin(d*x+c)*cos(d*x+c)*EllipticF((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(
-(a+b)/(a-b))^(1/2))*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*(1/(1+cos(d*x+c)))^(1/2)*a+B*sin(d*x+c)*cos
(d*x+c)*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*(1/(1+cos(d*x+c)))^(1/2)*EllipticE((-1+cos(d*x+c))*((a-b
)/(a+b))^(1/2)/sin(d*x+c),(-(a+b)/(a-b))^(1/2))*a-A*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*(1/(1+cos(d*
x+c)))^(1/2)*EllipticF((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(-(a+b)/(a-b))^(1/2))*a*sin(d*x+c)-A*((b
+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*(1/(1+cos(d*x+c)))^(1/2)*EllipticE((-1+cos(d*x+c))*((a-b)/(a+b))^(1
/2)/sin(d*x+c),(-(a+b)/(a-b))^(1/2))*b*sin(d*x+c)-B*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*(1/(1+cos(d*
x+c)))^(1/2)*EllipticF((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(-(a+b)/(a-b))^(1/2))*a*sin(d*x+c)+B*((b
+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*(1/(1+cos(d*x+c)))^(1/2)*EllipticE((-1+cos(d*x+c))*((a-b)/(a+b))^(1
/2)/sin(d*x+c),(-(a+b)/(a-b))^(1/2))*a*sin(d*x+c)+A*cos(d*x+c)*((a-b)/(a+b))^(1/2)*b-B*cos(d*x+c)*((a-b)/(a+b)
)^(1/2)*a-A*((a-b)/(a+b))^(1/2)*b+B*((a-b)/(a+b))^(1/2)*a)*cos(d*x+c)*(1/cos(d*x+c))^(1/2)*((b+a*cos(d*x+c))/c
os(d*x+c))^(1/2)/sin(d*x+c)/(b+a*cos(d*x+c))/(a+b)/((a-b)/(a+b))^(1/2)/a

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*sec(d*x+c))*sec(d*x+c)^(1/2)/(a+b*sec(d*x+c))^(3/2),x, algorithm="maxima")

[Out]

integrate((B*sec(d*x + c) + A)*sqrt(sec(d*x + c))/(b*sec(d*x + c) + a)^(3/2), x)

________________________________________________________________________________________

Fricas [C] Result contains higher order function than in optimal. Order 9 vs. order 4.
time = 0.95, size = 606, normalized size = 2.82 \begin {gather*} \frac {6 \, {\left (B a^{3} - A a^{2} b\right )} \sqrt {\frac {a \cos \left (d x + c\right ) + b}{\cos \left (d x + c\right )}} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right ) - \sqrt {2} {\left (3 i \, A a^{2} b - i \, B a b^{2} - 2 i \, A b^{3} + {\left (3 i \, A a^{3} - i \, B a^{2} b - 2 i \, A a b^{2}\right )} \cos \left (d x + c\right )\right )} \sqrt {a} {\rm weierstrassPInverse}\left (-\frac {4 \, {\left (3 \, a^{2} - 4 \, b^{2}\right )}}{3 \, a^{2}}, \frac {8 \, {\left (9 \, a^{2} b - 8 \, b^{3}\right )}}{27 \, a^{3}}, \frac {3 \, a \cos \left (d x + c\right ) + 3 i \, a \sin \left (d x + c\right ) + 2 \, b}{3 \, a}\right ) - \sqrt {2} {\left (-3 i \, A a^{2} b + i \, B a b^{2} + 2 i \, A b^{3} + {\left (-3 i \, A a^{3} + i \, B a^{2} b + 2 i \, A a b^{2}\right )} \cos \left (d x + c\right )\right )} \sqrt {a} {\rm weierstrassPInverse}\left (-\frac {4 \, {\left (3 \, a^{2} - 4 \, b^{2}\right )}}{3 \, a^{2}}, \frac {8 \, {\left (9 \, a^{2} b - 8 \, b^{3}\right )}}{27 \, a^{3}}, \frac {3 \, a \cos \left (d x + c\right ) - 3 i \, a \sin \left (d x + c\right ) + 2 \, b}{3 \, a}\right ) + 3 \, \sqrt {2} {\left (-i \, B a^{2} b + i \, A a b^{2} + {\left (-i \, B a^{3} + i \, A a^{2} b\right )} \cos \left (d x + c\right )\right )} \sqrt {a} {\rm weierstrassZeta}\left (-\frac {4 \, {\left (3 \, a^{2} - 4 \, b^{2}\right )}}{3 \, a^{2}}, \frac {8 \, {\left (9 \, a^{2} b - 8 \, b^{3}\right )}}{27 \, a^{3}}, {\rm weierstrassPInverse}\left (-\frac {4 \, {\left (3 \, a^{2} - 4 \, b^{2}\right )}}{3 \, a^{2}}, \frac {8 \, {\left (9 \, a^{2} b - 8 \, b^{3}\right )}}{27 \, a^{3}}, \frac {3 \, a \cos \left (d x + c\right ) + 3 i \, a \sin \left (d x + c\right ) + 2 \, b}{3 \, a}\right )\right ) + 3 \, \sqrt {2} {\left (i \, B a^{2} b - i \, A a b^{2} + {\left (i \, B a^{3} - i \, A a^{2} b\right )} \cos \left (d x + c\right )\right )} \sqrt {a} {\rm weierstrassZeta}\left (-\frac {4 \, {\left (3 \, a^{2} - 4 \, b^{2}\right )}}{3 \, a^{2}}, \frac {8 \, {\left (9 \, a^{2} b - 8 \, b^{3}\right )}}{27 \, a^{3}}, {\rm weierstrassPInverse}\left (-\frac {4 \, {\left (3 \, a^{2} - 4 \, b^{2}\right )}}{3 \, a^{2}}, \frac {8 \, {\left (9 \, a^{2} b - 8 \, b^{3}\right )}}{27 \, a^{3}}, \frac {3 \, a \cos \left (d x + c\right ) - 3 i \, a \sin \left (d x + c\right ) + 2 \, b}{3 \, a}\right )\right )}{3 \, {\left ({\left (a^{5} - a^{3} b^{2}\right )} d \cos \left (d x + c\right ) + {\left (a^{4} b - a^{2} b^{3}\right )} d\right )}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*sec(d*x+c))*sec(d*x+c)^(1/2)/(a+b*sec(d*x+c))^(3/2),x, algorithm="fricas")

[Out]

1/3*(6*(B*a^3 - A*a^2*b)*sqrt((a*cos(d*x + c) + b)/cos(d*x + c))*sqrt(cos(d*x + c))*sin(d*x + c) - sqrt(2)*(3*
I*A*a^2*b - I*B*a*b^2 - 2*I*A*b^3 + (3*I*A*a^3 - I*B*a^2*b - 2*I*A*a*b^2)*cos(d*x + c))*sqrt(a)*weierstrassPIn
verse(-4/3*(3*a^2 - 4*b^2)/a^2, 8/27*(9*a^2*b - 8*b^3)/a^3, 1/3*(3*a*cos(d*x + c) + 3*I*a*sin(d*x + c) + 2*b)/
a) - sqrt(2)*(-3*I*A*a^2*b + I*B*a*b^2 + 2*I*A*b^3 + (-3*I*A*a^3 + I*B*a^2*b + 2*I*A*a*b^2)*cos(d*x + c))*sqrt
(a)*weierstrassPInverse(-4/3*(3*a^2 - 4*b^2)/a^2, 8/27*(9*a^2*b - 8*b^3)/a^3, 1/3*(3*a*cos(d*x + c) - 3*I*a*si
n(d*x + c) + 2*b)/a) + 3*sqrt(2)*(-I*B*a^2*b + I*A*a*b^2 + (-I*B*a^3 + I*A*a^2*b)*cos(d*x + c))*sqrt(a)*weiers
trassZeta(-4/3*(3*a^2 - 4*b^2)/a^2, 8/27*(9*a^2*b - 8*b^3)/a^3, weierstrassPInverse(-4/3*(3*a^2 - 4*b^2)/a^2,
8/27*(9*a^2*b - 8*b^3)/a^3, 1/3*(3*a*cos(d*x + c) + 3*I*a*sin(d*x + c) + 2*b)/a)) + 3*sqrt(2)*(I*B*a^2*b - I*A
*a*b^2 + (I*B*a^3 - I*A*a^2*b)*cos(d*x + c))*sqrt(a)*weierstrassZeta(-4/3*(3*a^2 - 4*b^2)/a^2, 8/27*(9*a^2*b -
 8*b^3)/a^3, weierstrassPInverse(-4/3*(3*a^2 - 4*b^2)/a^2, 8/27*(9*a^2*b - 8*b^3)/a^3, 1/3*(3*a*cos(d*x + c) -
 3*I*a*sin(d*x + c) + 2*b)/a)))/((a^5 - a^3*b^2)*d*cos(d*x + c) + (a^4*b - a^2*b^3)*d)

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {\left (A + B \sec {\left (c + d x \right )}\right ) \sqrt {\sec {\left (c + d x \right )}}}{\left (a + b \sec {\left (c + d x \right )}\right )^{\frac {3}{2}}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*sec(d*x+c))*sec(d*x+c)**(1/2)/(a+b*sec(d*x+c))**(3/2),x)

[Out]

Integral((A + B*sec(c + d*x))*sqrt(sec(c + d*x))/(a + b*sec(c + d*x))**(3/2), x)

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*sec(d*x+c))*sec(d*x+c)^(1/2)/(a+b*sec(d*x+c))^(3/2),x, algorithm="giac")

[Out]

integrate((B*sec(d*x + c) + A)*sqrt(sec(d*x + c))/(b*sec(d*x + c) + a)^(3/2), x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.00 \begin {gather*} \int \frac {\left (A+\frac {B}{\cos \left (c+d\,x\right )}\right )\,\sqrt {\frac {1}{\cos \left (c+d\,x\right )}}}{{\left (a+\frac {b}{\cos \left (c+d\,x\right )}\right )}^{3/2}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((A + B/cos(c + d*x))*(1/cos(c + d*x))^(1/2))/(a + b/cos(c + d*x))^(3/2),x)

[Out]

int(((A + B/cos(c + d*x))*(1/cos(c + d*x))^(1/2))/(a + b/cos(c + d*x))^(3/2), x)

________________________________________________________________________________________